
Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

Duality and Emergence

Sebastian De Haro

University of Cambridge and University of Amsterdam

Based on joint work with: J.N. Butterfield, D. Dieks, J. van Dongen

Quantum Gravity: Physics and Philosophy

IHES, Paris, 25 October 2017

Sebastian De Haro Duality and Emergence



Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

Introduction: Duality and Emergence

Dualities have become standard tools for theory construction in
theoretical physics (see the talk by C. Bachas).

Dualities also connect well with two philosophical topics:
theoretical equivalence and physical equivalence.

In the physics literature, duality also often appears related to
emergence. When a weakly-coupled theory (GR in AdS, say) is dual to a
strongly coupled theory (a CFT), it is often concluded that the
weakly-coupled theory ‘emerges’ from the CFT.

In particular, it is often claimed that spacetime (and-or gravity) emerge.

This is a very interesting claim which deserves scrutiny.
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Introduction: Duality and Emergence

Duality and emergence are two notions which seem to be closely
connected, but are also in tension.

Duality: theoretical/formal equivalence between two theories.

Emergence: focus on novelty, hence on the lack of equivalence between
two theories or phenomena.
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Conceptual Questions (a philosopher’s wish-list)

(1) Construal: how to best construe dualities?
How does duality relate to theoretical equivalence?
Can string-theoretic dualities be treated along with other cases of duality,
such as position-momentum duality or electric-magnetic duality?

(2) Illustration: are string theory dualities exact (i.e. valid
non-perturbatively)? Are there examples of exact dualities which
illustrate the construal (1)?

(3) Physicality: under what conditions do dualities amount to cases of
physical equivalence?

(4) Emergence: what is emergence? What is the relation between
duality and emergence? Does spacetime emerge?
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Aim of the Talk

Aim of the talk: to give a conceptual account of dualities and to relate
it to the discussion of emergence.

(De Haro (2016, 2017), De Haro and Butterfield (2017), Dieks et al.
(2015).)

Some (interesting!) things I will not do:

• Discuss the questions of physical (in)coherence, experiential spacetime,
etc. (see the talks by D. Dieks and Y. Dolev).

• Discuss emergence in gauge-gravity dualities (see talk by G. Horowitz).
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Duality and its related notions

We need working conceptions of: theory and interpretation.

Bare theory: a triple T := 〈S,Q,D〉, comprising a structured state
space, S, a structured set of quantities, Q, and a dynamics, D:
together with a set of rules for evaluating quantities on the states.
There are also symmetries, which are automorphisms a : S → S of the
set of states (or as the dual maps on the set Q of quantities).

Interpreted theory: it adds, to a bare theory, an interpretation: i.e. a
set of structure-preserving partial maps from the theory to the world.
The interpretation fixes the reference of the terms in the theory. More
precisely, an intepretation maps the theory, T , to a domain of application,
DW , within a possible world, W , i.e. it maps I : T → DW , preserving
structure. Interpretations can be further restricted by imposing suitable
conditions on the kinds of maps admissible (as I will do for emergence).

We of course normally work with interpreted theories. So, by a ‘theory’, I
will mean an interpreted theory.
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Our usage

Model: a homomorphic copy of a theory (i.e. representation, in the sense
of representation theory).

A bare theory can be realized (I will say: modelled) in various ways: like
the different representations of a group or algebra.

These models are in general not isomorphic, and they differ from one
another in their specific structure: like inequivalent representations of a
group.

But we say: when the models are isomorphic, we have a duality.
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Our usage

Beware: the word ‘model’, as contrasted with ‘theory’, often connotes:

(i): a specific solution for the physical system concerned, whereas the
‘theory’ encompasses all solutions—and in many cases, for a whole class
of systems;

(ii): an approximation, whereas the ‘theory’ deals with exact solutions;

(iii): being part of the physical world (especially: being empirical,
and-or observable) that gives the interpretation, whereas the ‘theory’ is
not part of the world, and so stands in need of interpretation.

Our use of ‘model’ rejects all three connotations.
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Duality as surprising

We usually discover a duality in the context of studying, not a bare
theory, but rather: two interpreted models of a bare theory.

For example, type IIB supergravity on AdS5 × S5

and N = 4, U(N) super-Yang-Mills.

Usually, we do not initially believe them to be isomorphic in any relevant
sense. Or even: to be models of any single relevant theory
(even of a bare one).

The surprise is to discover that they are such models—indeed are
isomorphic ones. And the surprise is greater, the more detailed is the
common structure.
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Notation for theories and models

A notation for a model M that exhibits how M augments the structure of
the theory T with specific structure, M̄ say, of its own:

M = 〈TM , M̄〉 . (1)

The subscript on TM reflects that the specific structure M̄ is used to
build the representation of T .

We call TM , the ‘part’ of M that represents T , the model root.

Thus for a theory as a triple, T = 〈S,Q,D〉: we write a model as a
quadruple:

M = 〈SM ,QM ,DM , M̄〉 =: 〈m, M̄〉 , (2)

where m := TM := 〈SM ,QM ,DM〉 is called the model triple (root).
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The conception of duality

We propose that a duality is an isomorphism between two model roots
(model triples). Recall that M = 〈SM ,QM ,DM , M̄〉 =: 〈m, M̄〉 , where
m := 〈SM ,QM ,DM〉 is the model root (model triple).

A duality between M1 = 〈SM1 ,QM1 ,DM1 ; M̄1〉 and
M2 = 〈SM2 ,QM2 ,DM2 ; M̄2〉 requires isomorphism of the model roots:
an isomorphism between (usually) Hilbert spaces:

dS : SM1 → SM2 using d for ‘duality’ ; (3)

and isomorphism between the sets (almost always: algebras) of
quantities:

dQ : QM1 → QM2 using d for ‘duality’ ; (4)

I will call the common model root of the models, i.e. the models defined
up to isomorphism, the common core (if there are no non-isomorphic
models to be considered, the common core will also be the theory).
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(i) the values of all quantities match:

〈Q1, s1〉1 = 〈dQ(Q1), dS(s1)〉2 , ∀ Q1 ∈ QM1 , s1 ∈ SM1 . (5)

(and the same for maps involving more arguments, e.g. S × S → C)

(ii) dS is equivariant for the two triples’ dynamics, DS:1,DS:2, in the
Schrödinger picture; and dQ is equivariant for the two triples’ dynamics,
DH:1,DH:2, in the Heisenberg picture:

SM1

dS−−−→ SM2yDS :1

yDS :2

SM1

dS−−−→ SM2

QM1

dQ−−−→ QM2yDH:1

yDH:2

QM1

dQ−−−→ QM2

Figure: Equivariance of duality and dynamics, for states and quantities.
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A logically weak, but physically strong notion

Our notion of duality is logically weak:
there is duality whenever two model roots are isomorphic.

Thus one might worry that, whenever two given models share some
common structure smaller than the model triples, they are dual with
respect to the substructures they share.

But this worry is blocked by the requirement that duality must map
model roots (triples).

So, an isomorphism relative to a structure smaller than the model
root does not count as a duality. Not any old isomorphism counts as
duality!

(The choice of a model root is a physical choice: roughly, as in ‘the
uninterpreted degrees of freedom the model is able to describe’.)

Thus duality is an isomorphism between uninterpreted, but physical,
models.
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—A logically weak, but physically strong notion

Example: consider two models with state spaces:

M0 := 〈J, · , · ; · 〉
M := 〈J⊗K, · , · ; · 〉 , (6)

(where J = vector space acted upon by the irrep of su(2) with spin j .)
M0 and M are both representations of su(2) and they share J as a

common structure. Yet they are not dual to each other, because their
state spaces are not isomorphic.

In order for M0 and M to be dual, K would have to be part of M’s
specific structure. So, define:

M ′ := 〈J, · , · ; K, · 〉 (7)

Now M0 and M ′ are dual, because their state spaces are the same,
regardless their different specific structures. But still M 6= M ′, despite
their sharing the same ‘data’: because their state spaces are different.
They are theoretically inequivalent.
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A logically weak, but physically strong notion

Two ways to construct a theory out of its models:

(1) Reconstruction theorems (cf. Majid (1991)): e.g. an Abelian
group can be reconstructed from its set of representations (again an
Abelian group), using Pontryagin’s duality theorem.

Incidentally, Pontryagin duality, taken on face value, is not a duality, in
our sense (for it is not an isomorphism of the groups).
But one can construct a suitable model root, of which it is a case of
self-duality (with a single isomorphism, rather than a triple of them).

(2) ‘Taking the union and modding out’: reconstruct a theory from a
set of dual models (even if a only subset of all models) by ‘abstracting
from the specific structure of the models’, i.e. by identifying elements of
the models which are related by isomorphism.

I will illustrate roughly this procedure, of “finding a common core”, in
gauge-gravity duality.
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The analogy with symmetry

People say: a duality is like a symmetry, but at the level of a theory.
That is: while a symmetry carries a state to another state that is ‘the
same’ or ‘matches it’, a duality carries a theory to another theory that is
‘the same’ or ‘matches it’.

We endorse this analogy. The interesting questions, for both sides,
concern the different ways to be ‘the same’ or ‘matching’.

A symmetry a (I write a for ‘automorphism’) carries a state s in a state
space S to another state a(s), where s and a(s) assign the same values
to all the quantities in some salient, usually large, set of quantities.

Hence the question: under what conditions, do s and a(s) represent
the very same physical state of affairs?

Similar issues arise for dualities:
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Duality and Interpretation

I have suggested that duality is a special case of theoretical
equivalence, i.e. for the most part a formal equivalence—an
isomorphism between model roots, in our case: model triples.

The question of physical equivalence arises when we consider
interpreted theories or models.
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External and Internal Interpretations

To answer questions about physical equivalence, we will need to further
distinguish two kinds of interpretations:

(1) External interpretation: maps as above, from the model,
M = (mT , M̄), to the world. There are two basic options:

(1a) The specific structure gets interpreted: i.e. the maps map
both the model root and the specific structure,i.e. Iext : M → DW .

(1b) The specific structure does not get interpreted, but the
interpretation couples the model to another, already interpreted
theory, e.g. a theory of measurement, i.e. Iext : mT × Tmeas → DW .

(2) Internal interpretation: the maps map from the theory, and
nothing else (equivalently, they map from the model root, neglecting the
specific structure), i.e. Iint : T → DW .

Sebastian De Haro Duality and Emergence



Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

A logically weak, but physically strong notion
Duality and Interpretation
Gauge-gravity duality

Physical (In-)Equivalence: Two Interpretative Cases

Since the conception of duality is formal, it certainly allows the idea of
‘distinct but isomorphic sectors of reality’—namely as the codomains
of the interpretation maps on the two sides of the duality. On such an
(external) interpretation, the models are then physically inequivalent.

But this of course does not forbid the other sort of case: where the two
models are physically equivalent, i.e. do describe ‘the same sector of
reality’. This is modelled by the (internal) interpretation maps having
the same images in their codomain:

QM1

dq−−−→ QM2

I
1
Int ↘ ↙ I

2
Int

QInt

Figure: The two sides of the duality describe ‘the same sector of reality’.

Sebastian De Haro Duality and Emergence



Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

A logically weak, but physically strong notion
Duality and Interpretation
Gauge-gravity duality

When does physical equivalence obtain?

Thus we get the following criterion for physical equivalence:

I 1
Int = I 2

Int ◦ d . (8)

I will say that ‘interpretation commutes with duality’
(in the sense that the corresponding diagram commutes).

This analysis simply formalises what we mean by the phrase ‘physical
equivalence’, as sameness of reference of two models.

But are there significant cases, in physics, in which such physical
equivalence in fact obtains?

Interpretations like the ones above (‘mapping the same sector of reality’)
can be constructed, given two conditions:
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Two conditions for physical equivalence

(1) Internal interpretation: the interpretation maps the model root
(the theory) but not the specific structure of the model. The idea here is
that ‘no other facts, external to the model root, should determine the
codomain of the interpretation’, i.e. ‘the interpretation should start from
the model roots, and nothing else’.

(2) Unextendability: we should be considering ‘models of the whole
world’. To claim the sameness of the two sectors of reality described by
the theory, we need to ensure that ‘there is no more for the two models
to describe’, so that ‘extending the theory beyond its given domain of
application’ will not be able to distinguish between the two models
(cf. Leibniz’s principle of the identity of indiscernibles).
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Interpretation: a quick example

AdS/CFT, if exact, contains sufficiently rich models, whose common core
supports an internal interpretation.

And these are ‘models of the whole world’, not extendable beyond
their domain of application: and so, on this internal interpretation, the
two models are physically equivalent.

On the other hand, the application of gauge-gravity duality to a
quark-gluon plasma (described as a five-dimensional black hole) is only
approximate, and does not map the whole world: and so, there is no
physical equivalence in that case.

I now discuss the duality in more detail
(and independently of matters of interpretation):
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Gauge-gravity duality

The schema can be illustrated in gauge-gravity dualities: they relate
(d + 1)-dimensional string theories (models) to d-dimensional quantum
field theories (QFT models).

We do not have an exact (or non-perturbative) definition of the
models, or of the duality. Having a rigorous definition of it would almost
be like ‘proving’ the duality.

But we can get important insights about the theory, and thus illustrate
the schema, by considering the semi-classical limit
(i.e. strong ’t Hooft coupling, cf. Bachas’ talk).

Suppose two such models are theoretically equivalent. Are they also dual,
in the sense just discussed? What is their common core?
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Gauge-gravity duality (pure gravity: no matter)

The gravity theory is defined under two boundary conditions for the
metric and the stress-energy tensor, defined at spacelike infinity:

(i) A boundary condition for the metric at infinity, which is defined up
to conformal transformations.

We have a d-dimensional conformal manifold, M, at infinity, with a
conformal class of metrics, [g ]. This is identified with the manifold on
which the CFT, with its conformal class of metrics, is defined.

Thus the pair (M, [g ]) is part of the common core.
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Gauge-gravity duality

The asymptotic symmetry algebra associated with the gravity model is
the d-dimensional conformal algebra, and the representations of this
algebra form the set of admissible states belonging to the Hilbert space,
|s〉M,[g ] ∈ H.

(ii) A boundary condition is also required for the asymptotic value of the
canonical momentum, Πg , conjugate to the metric on the boundary,
evaluated on all the states, 〈s|Πg |s〉. This choice further constrains the
states in H: it determines a subset of states of the conformal algebra.

The simplest (and usual) choice, 〈s|Πg |s〉 = 0, preserves the full
conformal symmetry.
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Gauge-gravity duality

In the case of interest (pure matter on the gravity side), the only
operator turned on in the CFT is the stress-energy tensor, Tij .

The duality dictionary tells us that: Πg ≡ Tij .

Thus, the two models share the d-dimensional conformal manifold M
with its conformal class of metrics [g ], the conformal algebra, and the
structure of operators.

These determine the values of the infinite set of correlation functions:

M,[g ]〈s| Ti1j1 (x1) · · ·Tinjn(xn) |s〉M,[g ] , (9)

which agree between the two models (cf. C. Bachas’ talk), with the
approximations made (and for a subset of states).

This discussion can be generalised to include other states and operators.
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An Exact Example: Bosonization

The Bosonic Model

The basic case: The duality, in two (Euclidean) dimensions, between:
(1): the free, massless bosonic scalar field; and
(2): the free, massless Dirac fermion.

Use complex coordinates, z = x0 + ix1, z̄ = x0 − ix1, parametrising
C ∼= R2. Then the massless Klein-Gordon equation takes the form:

∂∂̄Φ = 0 (10)

(with ∂ := ∂/∂z , ∂̄ := ∂/∂z̄). The general classical solution is the sum
of a holomorphic and an anti-holomorphic function:

Φ(z , z̄) = φ(z) + φ̄(z̄) . (11)
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Symmetries of the equations of motion (the action): (i) conformal
transformations; (ii) affine current algebra transformations.

(i): In two dimensions, the conformal group is
infinite-dimensional. It is parametrised by arbitrary holomorphic and
anti-holomorphic functions:

z → z ′ = f (z) , z̄ → z̄ ′ = f̄ (z̄) . (12)

The corresponding algebra will yield, under quantization, the Virasoro
algebra.

(ii): These are translations of the field by holomorphic or
anti-holomorphic functions,

Φ(z , z̄) → Φ(z , z̄) + ϕ(z) , Φ(z , z̄)→ Φ(z , z̄) + ϕ̄(z̄) . (13)

These transformations generalise the invariance of the action under
constant shifts Φ→ Φ + ϕ0, and are specific to two dimensions.
The corresponding algebra will yield, under quantization, an affine Lie
(aka: Kac-Moody) algebra.
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The conserved currents for the affine current algebra transformations:

J(z) := ∂φ(z) , J̄(z̄) := ∂̄φ̄(z̄) . (14)

The conserved currents for the conformal transformations are the
(holomorphic/anti-holomorphic) components of the stress-energy tensor:

T (z) = −1

2
∂φ ∂φ = −1

2
J2(z) , T̄ (z̄) = −1

2
∂̄φ ∂̄φ̄ = −1

2
J̄2(z̄) . (15)

Under quantization: (i) One defines (15) by normal ordering:

T (z) = −1

2
: J(z) J(z) : , T̄ (z̄) = −1

2
: J̄(z̄) J̄(z̄) : , (16)

with the affine currents still given by (14), but now as operator equations.
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(ii) Write the holomorphic and anti-holomorphic parts of the field as
Laurent series. The affine currents and the stress-energy tensor:

J(z) =
∑
n∈Z

Jn
zn+1

, J̄(z̄) =
∑
n∈Z

J̄n
zn+1

T (z) =
∑
n∈Z

Ln
zn+2

, T̄ (z̄) =
∑
n∈Z

L̄n
z̄n+2

. (17)

The Jn are linear in the creation and annihilation operators of the
holomorphic field φ, and the Ln are quadratic in the Jn’s.

Sebastian De Haro Duality and Emergence



Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

The bosonic model
The fermionic model
The dictionary, or: the common core

Finally, we get the algebras satisfied by Jn and Ln. The result is:

[Lm, Ln] = (m − n) Lm+n +
c

12
n(n2 − 1) δ(m+n)0

[Jm, Jn] = −m δ(m+n)0

[Lm, Jn] = −n J(m+n)0 . (18)

and the same algebra is satisfied by the J̄n and L̄n. Barred and unbarred
quantities commute with each other. In the case at hand, the central
charge c = 1.

The first line is the Virasoro algebra.
The second line is the (level k = 1, abelian) Kac-Moody algebra.
The third line comes from the fact that the Lm’s are quadratic in

the Jn’s.
The algebra (18) is called the enveloping Virasoro algebra (with

c = 1 and k = 1).
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This is the central result we need. For, together with (16) and the mode
expansions (17), the tensor product of the holomorphic enveloping
Virasoro algebra of the affine Lie algebra (18) and its anti-holomorphic
copy contains all of the information about the quantum model:

For the state-spaces are now the vector spaces on which this algebra
acts, endowed with an appropriate semi-positive norm, and all the
quantities, and the dynamics, are constructed from the operators
satisfying the algebra.

Sebastian De Haro Duality and Emergence



Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

The bosonic model
The fermionic model
The dictionary, or: the common core

The fermionic model

The massless Dirac fermion can be decomposed as Ψ =: (ψ, ψ̃), where ψ
and ψ̃ are chiral (Weyl) fermions, called left- and right-chiral, respectively.

We further decompose the Dirac fermions into real, i.e. Majorana
fermions, as follows: Ψ = 1√

2
(Ψ1 + i Ψ2). In terms of the chiral (Weyl)

fermions, we get ψ = 1√
2

(ψ1 + iψ2), where ψ1,2 are Weyl-Majorana

fermions.

The action takes the form of the sum of two copies of a single
Weyl-Majorana fermion, conventionally called χ (so χ = ψ1,2). For a
single Weyl-Majorana fermion:

SWM =
1

8π

∫
d2z

(
χ ∂̄χ+ χ̃ ∂χ̃

)
. (19)
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The action is invariant under two sets of symmetries:
(i) Conformal transformations: z → f (z), z̄ → f̄ (z̄), the same
transformations on the complex plane as in the bosonic model;
(ii) Left-holomorphic-chiral and right-anti-holomorphic-chiral
transformations:

ψ → ψ′ = e i α(z) ψ

ψ̃ → ψ̃′ = e i α̃(z̄) ψ̃ . (20)

The definition of conserved currents, and quantization, proceeds similarly
to the bosonic model. We have holomorphically and anti-holomorphically
conserved currents associated with the symmetries (i) and (ii):

J(z) = : ψ†ψ : , J̄ =: ψ̃† ψ̃ :

T (z) = −1

2
: J(z) J(z) := −1

2
:
(
ψ† ∂ψ − ∂ψ† ψ

)
: , (21)

with a similar expression for T̄ in terms of ψ̃.
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The resulting algebra is the very same as in the bosonic case, i.e. the
enveloping Virasoro algebra—Virasoro algebra with c = 1 with abelian
affine algebra at level k = 1 (and its anti-holomorphic copy)!

Therefore, also the state-space is the same, since it is constructed as the
vector space of semi-positive norm, on which the algebra acts.

Notice that: (A) the irreducible unitary (highest-weight) k = 1
representations of the affine Lie algebra are unique up to unitary
equivalence—and
(B) there is a corresponding unitary equivalence for the general
enveloping Virasoro algebra, i.e. the affine Lie algebra with the Virasoro
algebra (Eq. (18)), given the same central charge, level, and underlying
Lie algebra.

This correspondence between the algebras is the basis for the duality
map, d .
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The dictionary

The duality map d pairs: (a) the affine current algebra currents, and (b)
the stress-energy tensors. So it relates the currents of the two models.
We add subscripts ‘B’ and ‘F’ for ‘bosonic’ and ‘fermionic’:

JB(z) = ∂φ(z) ↔ JF(z) = :ψ†(z)ψ(z) :

TB(z) = −1

2
:∂φ(z) ∂φ(z) : ↔ TF(z) = −1

2
:
(
ψ†(z) ∂ψ(z)− ∂ψ†(z)ψ(z)

)
:

and similarly for the anti-holomorphic currents. The two sides satisfy the
same algebra.

That only fermion bilinears appear is expected. But surprisingly, the
bosonic field to which a single fermion corresponds is—not some kind of
‘square root’ of the boson—but an exponential:

: e i φ(z) : ↔ ψ(z) , : e−iφ(z) : ↔ ψ†(z)

: e−iφ̄(z̄) : ↔ ψ̃(z̄) , : e i φ̄(z̄) : ↔ ψ̃†(z̄) . (22)
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Two isomorphic model triples

Not any old isomorphism will do. We need isomorphism of triples!

But we almost already have that. We complete the picture as follows:

1 Quantities: There is an isomorphism betwen all the quantities,
because these are constructed from the currents, which satisfy the
same algebra.

2 States: This isomorphism also induces an isomorphism between the
states, because these are representations of the algebra (vector
spaces on which the algebra elements act).

3 Dynamics: The Hamiltonians are the same as well (same choice,
viz. the 00-component of the stress-energy tensor: but of course the
whole stress-energy tensor matches).

Therefore, also all the numeric values of all the correlation functions,
〈s|Q|s ′〉, agree between the bosons and the fermions.
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—Bosonization respects symmetries

The theory has two built-in symmetries: (i) the conformal group, whose
generator on the fields is the stress-energy tensor, (ii) an affine current
symmetry algebra, generated by the J-currents.

(i) The conformal group is the symmetry group of the background
spacetime, and it is represented in the same way in the two models,
viz. by the stress-energy tensor, for which there is an isomorphism.

(ii) The affine current symmetry algebra is represented very differently
in the two models! As translations of the field in the bosonic model
(Φ(z , z̄)→ Φ(z , z̄) + ϕ(z)), and as left- and right-chiral symmetry
transformations (ψ → e iα(z) ψ) in the fermionic model. Yet their
corresponding currents (the J-currents) satisfy the same algebra, and so
these symmetries act in the same way on the states and the quantities.

The symmetries were used in restricting the class of admissible
quantities, and they restrict this class in the same way in the two models.
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Generalisations of bosonization

Thirring model-sine Gordon duality (massive fermion-boson field
with potential cos(βφ)). In this case, the exponential map mapping
the boson to the fermion is appropriately generalised to include the
parameter β and the mass.

Bosonization with non-abelian symmetries: between fermions with
non-abelian gauge groups and WZW models.
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Emergence: Motivation

There is a large recent philosophical and physical literature on emergence.
But the notion of emergence remains vague, which limits its applicability.

Butterfield (2011) has clarified aspects of emergence: its independence
from related notions like reduction and supervenience. Yet the notions
involved (novelty and robustness) are informal, even vague.

Another source of confusion is the lack of a good account of the
distinction between ontological and epistemic emergence. Though
philosophers already have an understanding of this distinction, we are
rarely told what the distinction consists in, and how it plays out in
specific examples.

The consensus in the philosophy of physics literature seems to be that
‘emergence and reduction are independent’.
But just how this can be has not been made sufficiently clear.
The tension is similar to that existing between emergence and duality.
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Emergence: Motivation

The examples of emergence of space in the literature are usually not
very explicit.

A good conceptual framework for emergence could be of importance
for the analysis of concrete examples of emergence in physics, and in
particular for the development of theories that do not have an obvious
spacetime interpretation at the fundamental level.

One would wish to analyse emergence as a property of an interpreted
theory, rather than as a technical property of the bare theory.

Such an account should help clarify emergence of spacetime in the
construction of new theories (and new observations!).
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Emergence

My starting point is as follows: the working conceptions of theory and
of interpretation, introduced for duality, can also be used to describe
emergence.

The analysis of emergence will be analogous to that of duality, where we
replace ‘duality’ by a different map.

This map should capture the idea of ‘coarse-graining a theory to describe
a novel and-or specific physical situation or system’.

This will give us a “mechanism” for emergence, of a specific
(and pervasive) kind .

(Cf. also: Butterfield (2011), Fletcher (2016), Landsman (2013).)
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Approximative Emergence

I will advocate a view in which emergence is not in the bare, but in the
interpreted theory.

But I will restrict to bare theories with the following property:

Approximation: an asymmetric relation, Approx, among the theories in
a given family.

More precisely, there is a surjective and non-injective approximative
map, denoted by:

Approx : Tb → Tt (basic vs. top theory). (23)

The map approximates Tb by the approximating theory, Tt.
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Approximative Emergence

The approximative map Approx can be (a combination of) one of the
following:

(i) A mathematical limit: some variable of the theory is taken to a
special value, e.g. ~→ 0 or N →∞. In that case, Tt = lim~,1/N→0 Tb.

(ii) Comparing different physical situations or systems: one may
approximate one physical situation, or system, by another that resembles
it. For instance, one compares situations with different values of the
action (in addition to sending ~→ 0).

(iii) Mathematical approximations: one compares theories
mathematically: perhaps numerically, or in terms of some parameters of
approximation. For example, as when in a Taylor expansion one drops the
terms after a certain order of interest.
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Approximative Emergence

Approximative emergence: if two theories, Tb and Tt, are related by
an approximative map and if, in addition, Tt emerges from Tb, then we
have approximative emergence. In other words, the map itself does not
give us emergence (recall: we are not seeking to describe emergence as a
formal relation between two bare theories). The consensus view:

Emergence, informally (Butterfield, 2011): ‘I shall take emergence to
mean: properties or behaviour of a system which are novel and robust
relative to some appropriate comparison class. Here ‘novel’ means
something like: ‘not definable from the comparison class’, and maybe
showing features (maybe striking ones) absent from the comparison
class’. And ‘robust’ means something like: ‘the same for various choices
of, or assumptions about, the comparison class’... I shall also put the
idea in terms of theories, rather than systems: a theory describes
properties or behaviour which are novel and robust relative to what is
described by some other theory with which it is appropriate to compare.’
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Emergence as novel reference

Norton (2012) is a perspicacious discussion of the difference between
idealisation and approximation. He summarises the main difference
between the two as an answer to the question:

‘Do the terms involve novel reference?’

According to Norton, only idealisations introduce reference to a novel
system—where ‘system’ here may refer to a real or a fictitious system, a
mathematical object, etc. In the case of idealization, there is a ‘limit
system’ that realizes the ‘limit properties’. In the case of approximation,
the limit system either does not exist, or is not accurate enough to
describe the system under study.

(There is an important distinction in the way one can use ‘reference’ here
for the interpretative map: as an intension or as an extension. But I
will not dwell on these details.)

Sebastian De Haro Duality and Emergence



Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

Emergence, of what kind? The Proposal
A Case Study: Random Matrix Models
Novelty of Interpretation

Emergence, of what kind?

(i) Epistemic emergence: if the two theories, Tb and Tt, describe the
same ‘sector of reality’, i.e. the same world and domain of application,
then the codomains of their interpretations must coincide:

Tb

Approx−−−→ Tt

I b ↘ ↙ I t

D

Figure: The two interpretations describe ‘the same sector of reality’, so that
Ib = It ◦ Approx.

If, in addition to Ib = It ◦ Approx, there is emergence, we say this is
epistemic emergence. The emergence is at the level of the bare theory,
not in the interpretation, and so it is only epistemic: it reflects novelty of
description.
(I will not analyse further what the conditions are for novelty and
robustness in epistemic emergence.)
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Emergence as novel reference: second interpretative case

(ii) Ontological emergence: there is novel reference (cf. Norton
(2012)), i.e. the two interpretations refer to different domains of
application (even different worlds). In this case, Ib 6= It ◦ Approx, and:

Approx

Tb
Ib−−−→ Dy 6=

Tt
It−−−→ D ′

Figure: The failure of interpretation and approximation to commute
(Ib 6= It ◦ Approx) gives rise to different interpretations, possibly with different
domains of application D, D ′.

In other words, interpretation and approximation fail to commute.
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The Case Study: Random Matrix Models

Motivation from quantum gravity

Random matrix models are examples of purely algebraic structures (with
very minimal geometrical structure) within which a two-dimensional
Riemann surface emerges, in the ’t Hooft limit (N large but g2N fixed).

RMM illustrate the framework for emergence presented here, they are
mathematically precise, and so they can shed light on what we mean by
emergence of space out of non-spatial structures.

(The example only addresses emergence of space not emergence of
time or gravity.)

RMM are well-known in QFT: motivated by ’t Hooft’s large-N of QCD,
Brézin, Itzykson, Parisi and Zuber (1978) used them to model QFT.

They were also applied in two-dimensional quantum gravity.
(Cf. Di Francesco (1995).)
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Random Matrix Models: quantum gravity motivation

• Dijkgraaf and Vafa (2002): RMM calculate the effective
superpotential of a large class of four-dimensional gauge theories with
minimal supersymmetry. Non-perturbative results derived from this
perspective: e.g. the Seiberg-Witten solution of N = 2 theories.

• RMM can be embedded in string theory: the open topological string
theory, on a class of six-dimensional Calabi-Yau manifolds, reduces to a
RMM. In the large-N limit, the RMM describes the closed topological
string theory on a related, but different, class of Calabi-Yau manifolds
(a theory of topological gravity!). So, RMM realise simple versions of
open-closed string duality.

• They form some of the original motivation for group field theory.

• But here we will study the RMM on its own, stripped from its
field-theoretic or quantum gravity interpretations.
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Random Matrix Models

Defined by three objects: an N × N matrix Φ (usually: self-adjoint), an
integration measure w on the set of matrices, and a polynomial of degree
n + 1 in Φ (the potential). The basic quantity is the partition function:

Z =

∫
ΓN

w exp

(
− 1

g2
TrW (Φ)

)
, W (x) =

n+1∑
α=0

gα x
α . (24)

The partition function is invariant under a symmetry group GN (usually,
U(N)), which acts as: Φ 7→ S Φ S−1. So, the integral reduces to an
integral over eigenvalues (Brézin, Itzykson, Parisi, Zuber (1978)):

ZN =

∫
γ×···×γ

(
N∏
i=1

dλi

)
e−N

2SN

SN =
1

g2N2

N∑
j=1

W (λj)−
2

N2

∑
i<j

log(λi − λj) (25)
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The Saddle Point Approximation

The integral can be evaluated in the saddle point approximation:

W ′(λi )− 2g2
∑
j 6=i

1

λi − λj
= 0 . (26)

The second term is induced by the integration measure. It gives a
repulsive ‘Coulomb force’. Introduce the resolvent:

ωN(λ) =
1

N

N∑
i=1

1

λi − x
. (27)

From this quantity one can obtain the eigenvalue density, and it will
allow us to solve the random matrix model.

Classically g = 0, each eigenvalue lies at an extremum of its potential,
W ′(λi ) = 0. Thus we have a collection of points on the complex plane.
But as the ’t Hooft coupling g2N grows, the Coulomb repulsion becomes
stronger, and the eigenvalues spread out over a curve segment.
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Solving the Random Matrix Model

The resolvent solves the loop equation, which in the large-N limit has
the solution (ω(x) := limN→∞ ωN(x)):

ω(x) = − 1

2µ
W ′(x) +

1

2µ

√
W ′(x)2 − f (x) . (28)

W ′ is a polynomial of degree n, and f is of degree n − 1. We can rewrite
this in terms of the singular part of ω:

y2 = W ′(x)2 − f (x) ⇒ y =

√√√√ 2n∏
β=1

(x − aβ) . (29)

{aβ} are branch points, with branch cuts on [a2α−1, a2α] (α = 1, . . . , n).
The above is called the spectral curve of the random matrix model.
It is a compact, hyperelliptic Riemann surface of genus n − 1.
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Solving the Random Matrix Model

The density of eigenvalues can be solved from the above:

ρ(x) =

{
1

4πg2N

√
f (x)−W ′(x)2 if x ∈ supp (ρ)

0 if x /∈ supp (ρ)
. (30)

The support is the union of cuts, C = ∪nα=1[a2α−1, a2α].

Wigner’s semicircle law. For a quadratic potential, W (x) = 1
2 x

2, there

is a single cut, and ρ(x) = 1
4πg2N

√
8g2N − x2, Wigner’s semicircle law.

The length of the cut is 2
√

8g2N.
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The Matrix Model Solution in the ’t Hooft approximation

Figure: From a set of singular points to a smooth Riemann surface as g 2N � 1.

Sebastian De Haro Duality and Emergence



Part I. Duality
Bosonization: the free, massless case

Part II. Emergence

Emergence, of what kind? The Proposal
A Case Study: Random Matrix Models
Novelty of Interpretation

Emergence in Random Matrix Models

Recall the approximative map, Approx. In this case, this map is the ’t
Hooft approximation (g2N � 1): Approx (TN) =: T∞, where T∞ is the
’t Hooft approximation to the random matrix model. I will argue that:

T∞ := Approx (TN) 6= TN (for any N) . (31)

Consequently, also the domains of the interpretated theories differ:

D∞ 6= DN (for any N) . (32)

Eqs. (31)-(32) are not hard to show. The (interpreted) state space at
finite N is the set of N eigenvalues. But this sequence of state spaces
differs, for any N, from T∞’s state space, i.e. the complex plane (which
the dynamics constrains to be a Riemann surface with a prescribed
number of handles).

Also the quantities and the dynamics disagree. (One can choose subsets
of states and quantities, so that there is partial reduction.)
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Novelty of Interpretation

The interpretations are qualitatively different:
(Finite N) At any finite N, the state space is as a discrete set of

points on C. The degree of the potential, n ∈ Z, measures the growth of
the force between the eigenvalues with increasing distance.

(N →∞) The interpretation of the state space of T∞ is as a
Riemann surface. The integer n characterises the genus. There is no
force interpretation. No matter how large N, the interpretations for
finite and infinite N refer to different kinds of objects. Interpretation
and approximation do not commute, viz. I∞ ◦ Approx 6= IN .

This can be summarised in the following diagram:

Approx

T∞
I∞−−−→ D∞x 6=

TN
IN−−−→ DN

Figure: Failure of interpretation and approximation to commute.
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Novelty and Robustness

The novelty of the approximating theory is conveniently summarised in
the emergence of a collective field, the master field, which describes the
states, quantities, and dynamics of T∞. This field can be described
either by the density of eigenvalues, or by the Riemann surface. This
semi-classical field describes an infinite number of degrees of freedom.

So this is a case of ontological emergence, because of the difference
in interpretation. But to have emergence, we also require robustness of
the novel behaviour. Robustness concerns the relative independence of
T∞ from the details of TN at N ∈ N.

The density of eigenvalues ρ(λ) is indeed independent of the location
of the individual eigenvalues in TN . ρN ’s support, for finite N, is a
collection of N points on the complex plane. In the limit, ρ’s support
consists of a finite number n of cuts. The ‘memory’ of the original
location of the eigenvalues is lost!
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Space from a Theory without Space?

All approaches to quantum gravity seem to point to spacetime’s
emergence from some non-geometric or pre-geometric structure. And
part of my aim was to try and make this idea precise, for space.

Question: is the random matrix model, at finite N, a completely
non-geometric, or pre-geometric, model?

Answer: Yes, because the defining equations contain only eigenvalues
and integrals over them: with no geometric structures.

Obvious objection: there is geometry in defining the N2-dimensional
space of matrices, and in choosing a contour of integration γ ⊂ C!

But it is surely unreasonable to demand that space should emerge out of
mathematical structures that are not, in any way, mathematical spaces.
Most structures in physics are mathematical, even if not physical, spaces.
Write a quantity Q ∈ R, and you have a space!
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Space from a Theory without Space?

The demand for no space should be balanced: as the demand that the
set of states of the underlying theory be non-geometrically interpreted.

Random matrices do satisfy this more reasonable demand. The matrix Φ
takes values in a space of matrices, of dimension N2: not a space that
can be interpreted geometrically in any way that would be relevant to
physics. And a state is specified by a finite set of N eigenvalues. This is
an algebraic, rather than geometric, structure.

The contour of integration γ is again not the kind of geometric
structure we have in mind when we say ‘space’, in the context of random
matrices—a Riemann surface with meromorphic functions on it, etc. The
contour is at best a pre-geometric structure. For the Hermitian matrix
model, the contour is simply R.
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Conclusion: Duality

We advocate the notion of duality as isomorphism of model roots
(triples).

On this account, duality is a special case of theoretical equivalence.

The schema allows conceptions of a number of other notions, like
physical equivalence.

The schema is illustrated by boson-fermion duality (exactly) and
gauge-gravity duality (at large N).
Other examples worth exploring: electric-magnetic, T duality, S duality.

What gives the examples their specificity/scientific importance is:
(i) the structures preserved by the isomorphism;
(ii) their physical interpretation.

The framework can also be used to give an account of emergence:
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Conclusion: Emergence

The notion of reference distinguishes ontological vs. epistemic emergence.
The mark of ontological, approximative emergence is in the lack of
commutativity between approximation and interpretation.

Interpretations are maps with specific domains of application: they are
constrained by their empirical adequacy. Emergence is to be guided by as
rigorous as possible physical interpretation—which is assessed with
independent criteria.

Random matrix models exhibit approximative emergence of space in a
straightforward way. At finite N, the theory is interpreted in terms of
points and algebraic structures. In the ’t Hooft limit, the theory is a
classical theory with a master field: a Riemann surface with its
geometric structures. Beware: limits are not essential to approximative
emergence! (emergence is already visible at finite N).

The emergence is ontological because there is novel reference:
approximation and interpretation fail to commute.
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