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Outline

• Non-relativistic quantum mechanics & elimination of 

• UV divergences 

• Classical singularities 

• Relativistic quantum mechanics, QFT 

• UV divergences’ comeback, renormalization 

• The special case of gravity:  

•classical singularities 

•non renormalizability 

• String theory and its quantum miracles 

• A Copernican Revolution? 



Outline (ctnd.)

• A worked out example: Transplanckian-energy string 
collisions 

• Less desirable quantum effects 

• Massless/light scalar fields: Achille’s heel of QST? 

• Quantum String gravity and classical singularities 



In 1900 Max Planck introduced a new constant of 
Nature: h.  
This was the birth of non-relativistic Quantum 
Mechanics (NRQM), an extremely successful and 
internally consistent theory (see e.g. Dirac’s 
formulation) in spite of some “interpretation” 
problems. 

Non-relativistic Quantum Mechanics



Eliminating a UV divergence
Planck’s original motivation was the elimination of 
a divergence in the Black Body energy spectrum. 
The divergence was an ultraviolet (UV) one i.e. had 
to do with the excessive emission of high-
frequency radiation from the Black Body. 
Quantum mechanics cures this problem by 
introducing an exponential high frequency cutoff
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Other successes of NRQM are well known. 
I will only mention its explanation of the stability 
of atoms. 
Classically a system made of a positive and a 
negative charge is unstable against emission of EM 
waves. In a short time the H-atom should collapse. 
In QM it can live forever in its well-defined 
ground state (thanks to Heisenberg’s uncertainty 
principle). 

Eliminating classical singularities
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Relativistic Quantum Mechanics 
Dirac himself was much aware of the problems that 
could originate from a relativistic extension of QM. 
Relativity allows for the transformation of energy into 
matter and back. 
The number of particles/quanta is no longer conserved. 

Quantum mechanics, on the other hand, allows for 
energy to be borrowed for very short time lapses (so-
called E-t uncertainty principle). 

Combining the two, an indefinite number of quanta of 
arbitrary energy can be created for a very short time 
interval. How can we check this quantitatively?



Quantum Field Theory (QFT) 
Dealing with creation and destruction of quanta turned 
out to be a difficult task in the old NRQM formalism. 

Historically people abandoned that formalism and turned 
to Quantum Field Theory (also known, somewhat 
improperly, as 2nd quantization) 

The starting point is a classical field theory (e.g. 
Maxwell coupled to charged particles/fields, QED) to 
which one applies the rules of QM (PB-> i commutator). 

The Fourier modes of the fields become creation and 
destruction operators for relativistic particles/quanta.



Special relativity and QM happily coexist in QFT. 
But the problem with virtual creation of arbitrarily 
many energetic quanta pops out. 

It appears through the UV divergence of radiative 
corrections (no Planck-like exp. cutoff!) 

There is a classical counterpart: the EM energy of a 
pointlike charged particle is classically infinite. 

This divergence is alleviated but not eliminated by 
QM. 

Reappearence of UV divergences 



These quantities cannot be predicted. Even if they 
were given at the classical level quantum corrections 
would change them by an infinite amount. 

The best that one can do it to “renormalize” the 
theory, i.e. give up to compute the above-mentioned 
quantities and, instead, take them for experiments. 

Yet, for the non-gravitational interactions of the SM 
the infinities can be absorbed into a finite number of 
quantities



Philosophically this is not very satisfactory. A better 
attitude, I think, is to say that QFTs are only valid 
up to a certain distance scale and then some (yet 
unknown) mechanism removes the infinities. 

Precisely a finite number of quantities will depend on 
the details of how the theory is regularized… 

These are the quantities that have to be measured 
(mass and charge of the electron, the fine-structure 
constant in QED).  

The rest, in principle, is predictable (g-2 in QED).



Gravity is special! 
Gravity is somewhat pathological even at the classical 
level. Ubiquitous singularities are generated even 
when starting from innocent looking smooth initial 
conditions or when we integrate backwards EEs. 
Most known examples: 

1. Gravitational Collapse, BH formation, singularity 
behind a BH’s horizon. 

2. The cosmological singularity usually (and I think 
wrongly) associated with the Big Bang. 



Non-renormalizability of Quantum Gravity 
The problem with quantum gravity is that the 
renormalization  strategy does not work in this case. 

The ultimate reason for this failure is that, according to 
the Equivalence Principle of GR, gravity couples to 
energy.  UV divergences are related to high energies 
and therefore they are enhanced by the gravitational 
interaction. 

Virtual quanta of arbitrarily high energy are too 
copiously produced by gravitational interactions and 
make quantum GR non-renormalizable (infinities cannot 
be lumped into a finite number of quantities): 
predictivity is lost! 



Another problem with quantum gravity are the 
difficulties one encounters with quantization in curved 
spacetimes. 

Quantum effects appear to depend upon the reference 
frame (e.g. accelerated vs. inertial) while the EP would 
require that they do not. 

It is probably inconsistent to quantized matter fields in 
a fixed curved background, the background itself being 
subject to quantum fluctuations.  

Is the information paradox a consequence of such an 
inconsistent mixture of classical and quantum?



The most interesting attempts to this date are 
those of Loop Quantum Gravity and of Asymptotic 
Safety. Both assume that one can make sense of 
quantum gravity by modifying the way to quantize 
GR, but not GR itself.  

Alternative approaches to QGR
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The interaction is smeared over a 
finite region of space-time

The interaction takes place 
at a single point in space-time

The EW lesson (Fermi vs. GWS)

It was not a matter of finding a smart trick to 
quantize the theory. We had to modify it!



A 2nd lesson from particle physics
  
According to our present understanding, at the most 
microscopic quantum level all fundamental interactions 
are transmitted by massless particles of spin 1 or 2. 

The first (e.g. the photon) give rise to non-
gravitational interactions, while the latter (the 
graviton) is responsible for gravity. 

Both gauge invariance and general covariance follow 
from the consistency of those massless-particles’ 
interactions 



A Copernican Revolution  
from String Theory!

GR (and gauge theories) as a 
consequence of QM?



String theory: what’s that? 
best reply? 

   « String Theory is the theory of strings » 



Replace the grand principles (gauge invariance, general 
covariance) by «just» the assumption that everything 

is made of  
 Relativistic Quantum Strings 

open string

closed string
.. or

SR + QM + strings = Big Synthesis
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I. Finite Size

 Classical string theory is scale free. Classical strings 
have no characteristic size.                                                                                                        
The characteristic size of quantum strings is 
determined by Quantum Mechanics:

€ 

T = string tension

Note analogy (in D=4) with:
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Analogy with atoms

Even closer with ground state of harmonic oscillator
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Ls

Without QM strings become lighter and lighter as they shrink

With QM strings are lightest when their size is Ls 

increasing M

decreasing M

increasing M



Ls

Ls

Ls

Interactions are smeared over regions of order Ls  

This basic property of quantum strings cures the ultraviolet 
problems of conventional quantum gravity by removing UV 
divergences altogether

Field Theory String Theory



II. J without M
 A classical string cannot have angular momentum without 

having a finite length, hence a finite mass. A quantum 
string, instead, can have up to two units of angular 
momentum without gaining mass. 

after consistent regularization

NB: The inevitability of massless spinning states was one reason 
for abandoning the old string theory in favor of QCD. 
=>String theory CAN be falsified by large-distance experiments!



  => m=0, J = 1  => photon and 
other gauge bosons mediating the 
non-gravitational forces

⇒m=0, J = 2   =>  graviton, 
mediating the gravitational force

In particular our Copernican Revolution…

All elementary particles correspond to different vibrations of 
the same basic objects: open and closed strings!



A unified and finite theory of elementary particles, and 
of their gauge and gravitational interactions, not just 

compatible with, but based upon,  
Quantum Mechanics! 

QM gives rise, directly, to quantum versions of gauge 
and gravitational interactions whose classical limit is the 

conventional starting point of QFT. 
 However, it also provides short-distance corrections 
without which QFTs are plagued by UV divergences! 

Combining both miracles provides



A worked-out example: 
transplanckian-energy string 

collisions (in Minkowski spacetime)



   We can fix the two initial strings as well as s = E2 

and J. 
Hard to imagine a simpler pure initial state that could 
lead to BH formation and whose unitary evolution we 
would like to understand/follow. An interesting 
gedanken experiment! 
TPE simplifies the theoretical analysis by justifying a 
semiclassical approximation. 
Calculations done in flat spacetime!

Trans-Planckian E string-string collisions



TPE (closed)string-string collisions  
(a two-loop contribution)

string color code: 
red: in, out 
green: exchanged 
yellow: produced
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collisions @ s >> MP2

•  3 relevant length scales (neglecting lP @ gs << 1) 
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in string-string collisions from 
classical collapse criteria



Actually there are subregions: 
Why? 



General arguments and explicit calculations suggest the 

following form for the TPE string-string elastic S-matrix:

NB: Since leading term is real, for Im Acl some terms may be 
more than just corrections. They give absorption (|Sel| < 1). 
This i gives rise to subregions.
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A semiclassical S-matrix @ high energy 



The weak-gravity QFT regime



Leading eikonal diagrams (crossed ladders included)
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A unitary elastic S-matrix

The integral is dominated by a saddle point at:

1. Deflection angle given by derivative of phase shift w.r.t. b. 
=> correct generalization of Einstein’s deflection formula to 
ultra-relativistic collisions & arbitrary D. 

2. Derivative w.r.t. E gives correct Shapiro time delay. 
3. Elastic unitarity is fullfilled.  

comments:



The weak-gravity QST regime 
(w/ exact inelastic unitarity)
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Critical line?
2 = string gravity

3 = strong gravity1=weak gravity

We are still in region 1 (but a little lower)! 



String-string scattering @ large b 
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String-size effects are simply captured, at the leading 
eikonal level, by replacing the impact parameter b by a 
shifted impact parameter, displayed by each string’s  
position operator evaluated at τ = 0 (= coll. time) and 
averaged over σ (see figure). 
This leads to a unitary operator eikonal (as long as the 
phase shift is real).  
N.B. Elastic unitarity -> inelastic unitarity
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Graviton exchange can excite one or both 
strings. Physical interpretation: a string 
moving in a non-trivial metric feels tidal 
forces as a result of its finite size. 
Indeed the quantitative results so obtained 
are fully consistent with the classical tidal-
effects picture. 
Everything is fully consistent with a quantum-
information preserving unitary evolution. 



exchanged gravi-reggeons

Tidal excitation of initial strings



Gravitational waves from TPE 
collisions (in point-particle limit)

A highly non-trivial problem both 
analytically and numerically 

(for further details see my talk at the 
IHES, June 2017)



S. Kovacs and K.Thorne 1977 
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2 = string gravity
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1=weak gravity



A classical treatment 
(A. Gruzinov & GV, 1409.4555)  

The calculation is done directly in the c.o.m. 
system for massless particles at small θs. 

Obtained via Huygens principle in Fraunhofer 
approximation. For gravity this includes in an 
essential way the effects of gravitational 
time delay in an external metric.
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Frequency and angular distribution of GW spectrum:  

Re ζ2 and Im ζ2  correspond to the two GW polarizations.  

Subtracting the deflected shock wave (cf. P. D’Eath) is crucial!  
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A quantum treatment in Minkowski 
spacetime 

(Ciafaloni, Colferai & GV, 1505.06619),  
 CC&Coraldeschi & GV, 1512.00281) 



In CC(C)V (1505.06619 & 1512.00281) the same problem 
has been addressed at the quantum level improving on 
the earlier (ACV07) treatment.
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One observation is that the usual soft-graviton 
recipe (emission from external legs) has to be 
amended since the internal exchanged gravitons 
are almost on shell. 

Emission from such internal lines is important for 
not-so-soft gravitons (hence for the energy loss). 
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Emission from external and internal legs through the 
whole ladder has to be taken into account.
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At fixed graviton helicity and momentum production 
amplitudes depend in a precise way upon the incidence 
angle, which changes along the fast-particle 
trajectory.  



Similar -but not identical- to the classical result of     
G+V.

If this effect is kept into account the result for 
c(ω, θ) is:

Finally, for relatively large angles (✓ > ✓
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⇠ 1/(Eb)) the first term in the expression for
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where we stress the appearance of the modulation function �(z) playing an important
role in the classical treatment of [?].

From eq. (3.33) we can see directly how the matching works. In fact, due to eq. (3.32),
the linear term (the log term) in eqs. (3.33) and (3.34) is in correspondence with external
(internal) insertions of the emission current. In region a), where z is pretty large, the
linear term dominates and provides directly the soft limit. In region b), the basic soft
behaviour (3.14) is reproduced but, with increasing values of b|q|, it is actually canceled
by internal insertions in region c), because in the small |z| limit the function �(z) is of
order ⇠ O (|z|2). This is confirmed by the Regge representation (3.23) which shows, by
inspection, a 1/(b|q|)2 behaviour for b|q| � 1.

To summarize, our matched amplitude (3.33) which, by construction, should be iden-
tical to the Regge one of eq. (3.22) in region c), is also a nice interpolation in (b[c) and
part of a) with |✓| > ✓

m

.3 For this reason we shall call eq. (3.33) (eq. (3.22)) the soft-
based (Regge-based) representation of the same unified amplitude. Their identity can be
directly proven by the equation
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which can be explicitly checked by switching to z, z⇤ variables and integrating by parts.
Eq. (3.36) is in turn a direct consequence of the di↵erential identity
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that will be related in sec. 3.4 to a transversality condition of the radiative metric tensor.
Our unified soft-Regge amplitude M has then, for a generic ⇥
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where the Regge-based (soft-based) representation is used in the first (second) line.

3.4 Radiative metric tensor

To complete the picture of single-exchange radiation, we recall the parallel calculation
of radiative corrections to the metric fields and to the e↵ective action [?, ?]. At first
subleading level this amounts to calculating the H-diagram fields �h and �a (fig. 6.b,c)
occurring in the metric. By leaving aside time-delays [?] we obtain [?]
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3That restriction will become unimportant when the resummation of sec. 4 will extend the collinear
region up to ⇥s ⇠ R/b � ✓m.
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that we are in the “large-angle” regime in the l.h.s. with negligible internal insertions
in the r.h.s., while eq. (3.26) remains the only acceptable expression in region c), where
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Therefore, in order to get a reliable emission amplitude holding in all regions (a[b[c),

we have to match the soft with the Regge evaluations. We start from the Fourier transform
in eq. (3.8) and we then add the di↵erence of Regge and soft evaluations of eq. (3.27) in
region c) and in part of region b), the border being parametrized by the cuto↵ �
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so that we get the expression
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If we then choose 1 ⌧ �
c

⌧ E/! the result (3.30) is weakly cuto↵ dependent and, in
the �
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! 1 limit, is formally equal to the negative of the Fourier transform of the soft
amplitude on the whole phase space, rescaled at E = ! or, in other words,
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By then using eq. (3.8) we obtain the explicit form of the matched amplitude
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where we have used the z-representation of the helicity phases (3.6). Again, this expression
holds at ⇥

i

= 0, but since it was obtained by interpolating the soft and Regge ampli-
tudes, it shares their transformation property (3.16). Equation (3.32) can be conveniently
rewritten in the form
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Figure 7: Graviton insertions for double-exchange diagrams. External line insertions are
represented in the first column, internal line insertions on the fast particles are in the
second column, insertions on the exchanged graviton in the third one. Gray shadows
around the fast particles denote o↵-shell propagation. Analogous insertion diagrams from
the lower line are understood. The sum of each row amounts to inserting a matched
emission amplitude (hatched brown blob) in place of a graviton propagator.
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We can see that the second “active” contribution, with non-zero incidence angle ⇥
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argument. This generalized factorization can be extended to the general case with n > 2
exchanges, where however the ✓-translation involves ⇥
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, i > 2, yielding higher
powers of the eikonal with z-dependent argument. In formulas, we obtain, order by order,

e2i�✓M
res

R

2

p
↵
G

=

Z
d2

z h
s

(z)eib!z·✓

1 +

2i

2!

�
�
0

(b) + �
0

�|b� ~!
E

bz|��

+
(2i)2

3!

�
�2
0

(b) + �
0

(b)�
0

�|b� ~!
E

bz|�+ �2
0

�|b� ~!
E

bz|��+ · · ·
�
.

(4.3)

Furthermore, the sum in square brackets is given by the expression
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so that we finally get the factorized and resummed amplitude
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where we have expanded the logarithm in the exponent and neglected higher order terms
in ~/Eb|✓|. The latter can in principle be evaluated as “quantum” corrections to the
basic formula of the last line.
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However, as argued by CCCV, one should also take 
into account the difference between the phase of 
the final 3-particle state and that of an elastic 2-
particle state. 

When this is done, the classical result of G+V is 
exactly recovered in the limit hω/E << 1!



We have analyzed (mostly numerically) the properties 
of the spectrum in the classical limit and obtained 
several nice pictures (see my May-June talk here). 
Here I will only make some more qualitative remarks. 

For b-1 < ω < R-1  the E-spectrum is almost flat in ω
  

  
Below ω = b-1 it freezes reproducing the ZFL

dEGW

d!
! 4G

⇡
✓2sE

2
log(✓�2

s )

dEGW

d!
⇠ �8G

⇡
✓2s log(!R)



ωR = 0.125ωR = 10-3

M. Ciafaloni, D. Colferai, F. Coraldeschi & GV,  1512.00281

Angular (polar and azimuthal) distribution



For ω > ω* G+V argued for an ω-2  spectrum (TBC): it 
turns out (extrapolating to θs ~1) to be that of a time-
integrated BH evaporation!

 Above ω = R-1 the energy spectrum becomes scale-invariant 

 

This gives a log ω* in the  “efficiency” for a cutoff at ω*

Using ω* ~ R-1 θs-2 (where our approximations break down 
and the “Dyson bound” dE/dt < 1/G is saturated) we find 
(to leading-log accuracy) the suggestive result:
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 If that behavior persists as b -> bc ~ R, the GW/graviton 
distribution becomes more and more “isotropic” with        
<n> ~ Gs/h and characteristic energy O(h/R ~TH). 

The emerging picture is quite appealing: transverse 
momenta are limited by 1/b while longitudinal ones (and 
energies) are controlled by the larger scale 1/R (with 
some leakage at higher frequencies)

We now want to understand what, if any, provides a 
large-frequency cutoff and extend the reasoning 
towards the large-angle/collapse regime.  
First steps (involving some educated guesses) already 
made by Ciafaloni & Colferai (1612.06923). 



How about short-distance 
modifications? 



The string-gravity regime 



R(E)

b

ls 

ls 

BH

Critical line?

2 = string gravity

3 = strong gravity

1=weak gravity



String-string scattering @ b,R < ls

“Classical corrections” screened, string-corrected leading 
eikonal can be trusted even for b < R.  

Phase shift is finite at b=0 and has a smooth expansion in 
b2/(ls2 logs). Its derivative wrt E gives a well-behaved time 
delay even for b ->0. 
Solves a potential “causality problem”, pointed out by 
Maldacena et al (1407.5597), see DDRV (1502.01254). 
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The maximal classical deflection angle is ~ (R/ls)D-3<<1, 
and is reached when the two strings graze each other. 
Scales shorter than ls cannot be explored => 

 Generalized (effective) Uncertainty Principle  
(GV, Gross, ACV) 

�x � ~
�p

+ ↵

0�p � ls



Less desirable quantum effects



Classical strings can move in any ambient space-time, flat, 
curved, and in an arbitrary number of dimensions. 
 Quantum strings require suitable space-times (more 
generally backgrounds) in order to avoid lethal anomalies.  
In the case of weakly coupled superstring theories space-
time, if nearly flat, must have 9 space and 1 time 
dimension. 
In order to reconcile this constraint with observations we 
have to assume that the extra dimensions of space are 
compact (or at least invisible to non-grav. interactions)  
QM pushes String Theory into a Kaluza-Klein scenario (or 
the waste basket?) to which it adds interesting twists…
There too ls plays a fundamental role.

Quantum strings don’t like D=4!



Massless/light scalar fields: 
Achille’s heel of QST?



• QFT’s parameters are replaced by (typically scalar) fields 
whose values provide the «Constants of Nature», e.g. the 
overall strength gs of string interactions including α

• Are they dynamically determined? Computing α has been a 
long-time theorist’s dream... 

• While today these «constants» look to be space-time-
independent, their variations may have played a role in 
early cosmology. The pre-big bang scenario uses it. 

•  If particles associated with above fields are too light, 
they induce long-range forces that threaten the EP (UFF).  

� Very active field of experimental and theoretical research 
• No need for Planck-scale experiments for testing string 

theory. True also for the old hadronic string! 
• Tree-level QST is already ruled out! But so is the SM!



„Fifth Force” strengths now excluded at small distances

from ST



String Gravity and GR singularities



• One of the most difficult -but also most fascinating- 
questions in ST is the fate of GR’s singularities (Big Bang, 
black hole interiors).

• At lowest order in derivatives and in the coupling the 
equations that insure a consistent string quantizations look 
like Classical Field Theory PDEs including (somewhat 
modified) Einstein equations. 

• The singularity theorems of Hawking and Penrose apply. 
Hence the solution is typically driven towards regimes 
(high curvature, strong coupling, or both) in which the 
approximations break down. 

• Q: Which are the correct equations in those non-
perturbative regimes? What happens where there used to 
be a singularity? Can we go through the (would be) 
singularity and keep predictivity? 

• We badly need techniques to study ST non perturbatively!



Thank You!



Abstract

After recalling how non-relativistic quantum mechanics (QM) removes the 
singularities of its classical counterpart, I will turn to relativistic quantum 
mechanics and to its conventional formulation known as Quantum Field 
Theory (QFT).

Because of a combination of quantum and relativistic effects, QFTs typically 
lead to new singularities associated with ultraviolet (UV) divergences.
Although theorists have become accustomed to (and have found a way to 
live with) them, such divergences may signal a new crisis in our description 
of microscopic phenomena.

Furthermore, in the case of gravity there is no known way to deal with UV 
divergences without giving up predictivity. This is particularly unfortunate 
since Classical General Relativity (CGR) is plagued by its own singularities 
(e.g. the cosmological singularity and the one in a black-hole interior) and 
one would have hoped that QM helps to solve them. There are also 
conceptual problems with quantization in curved space times which could 
very well be at the origin of Hawking’s information puzzle.



Since several decades, quantum string theory (QST) has been proposed as 
a possible (though only theoretical so far) solution to the above-mentioned 
problems. In the second part of my talk I will try to explain how QST 
combines special relativity and quantum mechanics in a way that represents 
a truly Copernican revolution.

Rather than attempting to quantize classical field theories (such as 
Maxwell’s or Einstein’s), QST starts from the quantum spectrum of strings 
moving in particularly simple (e.g. flat) space times. Such a spectrum 
includes a set of massless spinning states which implies, at sufficiently large 
distances, a QFT description of gravitational and non-gravitational 
phenomena together with short-distance modifications that cure the UV 
diseases of conventional QFTs.

Finally, classical field theories, rather than representing the starting point of 
a problematic quantization procedure, are recovered in the appropriate limit 
of a fully quantum framework. The geometry of space-time of CGR is 
arguably the most amazing structure  emerging from this revolutionary 
paradigm.


